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Abstract—The paper deals with state estimation of nonlin-
ear non-Gaussian systems with a special focus on the Gaussian
sum filters. To achieve a higher estimate quality, state and
measurement predictive moments appearing in the filters are
computed by the randomized unscented transform, which
provides asymptotically exact estimates of the moments. The
use of the Gaussian sum filter employing the randomized
unscented transform is introduced and the proposed algo-
rithm is illustrated in a numerical example. The analysis
of the numerical example involves a comparison of several
filters using a number of performance metrics both absolute
and relative, assessing the point estimate quality, the estimate
error quality, and the density estimate quality.
Keywords: state estimation, nonlinear filtering, non-
Gaussian.

I. INTRODUCTION

State estimation of nonlinear non-Gaussian discrete-
time stochastic dynamic systems is of utter importance
in many areas such as target tracking [1], [2], navigation,
signal processing, fault detection, and adaptive and optimal
control problems.

The Bayesian framework is a suitable tool for the state
estimation problem as it enables a non-Gaussianity analysis
with respect to the description of random quantities. A gen-
eral solution to recursive state estimation problems within
the Bayesian framework, is given by the Bayesian recursive
relations (BRR’s). They produce probability density func-
tions (pdf’s) of the state conditioned by the measurements.
The pdf’s represent a full stochastic description of the state,
which itself is unmeasurable.

The closed-form solution to the BRR’s is available
only for a few special cases, e.g., for a linear Gaussian
system [3], where the BRR’s solution corresponds to the
Kalman filter. When the measurement model or the state
transition model is nonlinear, an approximate method must
be applied. These approximate methods can be divided into
two groups with respect to the validity of the resulting
estimates [4]. The first group of methods provides results
with validity within a neighborhood of the point estimate
only and thus they are called local methods. The second

group of methods provides results valid within almost the
whole state space and are called global methods.

The local methods provide approximate conditional
mean and associated covariance matrix of the estimate
error. Popular approximations to nonlinear functions used
by the methods are (i) the Taylor series expansion of the
nonlinear functions in the system description leading to the
extended Kalman filter (EKF) or the second-order extended
Kalman filter [5], (ii) the polynomial linearization of the
nonlinear function by a first or second order polynomial
interpolation [6], [7] leading to the divided difference filters
(DDF’s), (iii) the stochastic linearization [8] approximating
a random variable by a set of points, which are transformed
through nonlinear functions and leading to the unscented
Kalman filter (UKF) [9]–[11], and (iv) calculating approx-
imate moments of a random variable by means of the
Gauss-Hermite quadrature [6] or cubature integration rules
and leading to quadrature or cubature filters [12]. In [13]
a randomized unscented Kalman filter has been proposed
(RUKF) based on a degree 3 stochastic integration rule
(SIR3), which is combination of the cubature rule and the
Monte Carlo (MC) method.

Due to the approximation of the state estimate condi-
tional pdf by the first two moments only, the local methods
are not very practical for non-Gaussian problems. Here,
the global estimation methods, providing an approximation
of the full conditional pdf, achieve a good quality perfor-
mance. However, note that the improved performance is
usually paid by higher computational costs. There are three
main approaches to the global filtering method design: (i)
the analytical approach based on Gaussian sum approxima-
tion of pdf’s [14], [15] and using approximation techniques
of the local methods, (ii) the numerical approach using
point-mass approximation of the conditional state pdf’s and
solving the integrals in the BRR’s numerically [16], [17],
and (iii) the simulation approach taking advantage of the
BRR’s solution by the MC methods and approximating the
conditional state pdf by an empirical representation [18],
[19].

The analytical global methods are based on a multiple
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application of local methods, e.g. the Gaussian Sum Filter
(GSF) consists of a bank of EKF’s, or the Sigma Point
Gaussian Sum Filter [20] using a bank of DDF’s or UKF’s.
In problems involving multiple mode pdf’s, the analytical
global methods provide a high estimate quality as they are
able to follow the modes with individual local methods.

The goal of the paper is to propose a filter based on
Gaussian sum representation of pdf’s and utilizing the
randomized unscented transform (RUT) which has been
used in [13] as a basis for designing the RUKF. The RUT
will be used to compute statistics of a transformed random
variable. Comparing to the unscented transform (UT),
appearing in the UKF, the RUT offers asymptotically exact
estimates of the statistics. The RUT gives a flexible and
computationally efficient method for computing posterior
moments when measurement and/or kinematic models are
nonlinear.

The paper is organized as follows: System specification
and nonlinear non-Gaussian state estimation by means of a
generic Gaussian-sum based global filter are introduced in
Section II. The RUT is discussed in Section III. Section IV
deals with the algorithm of the proposed filter with a
special focus on implementation details. In Section V, the
proposed filter will be applied to a numerical example for
performance evaluation and comparison, and concluding
remarks are drawn in Section VI.

II. SYSTEM SPECIFICATION AND GENERIC
GAUSSIAN-SUM BASED GLOBAL FILTER

Let the discrete-time nonlinear stochastic system be
considered in the following form

xk+1 = fk(xk)+ wk, k = 0, 1, 2, . . . , (1)
zk = hk(xk)+ vk, k = 0, 1, 2, . . . , (2)

where the vectors xk ∈ Rnx and zk ∈ Rnz represent the
unmeasurable state of the system and measurement at time
instant k, respectively, fk : Rnx → Rnx and hk : Rnx →

Rnz are known vector functions, and wk ∈ Rnx , vk ∈ Rnz

are the state and measurement white noises, which are
supposed to be mutually independent. The pdf’s of the
noises p(wk) and p(vk) are assumed to be known. The
initial state x0 is independent of the noises and its pdf is
supposed to be known.

The general solution to the estimation problem (i.e.
finding xk based on knowledge of zk 4

= [z0, z1, . . . , zk])
is given by the BRR’s computing pdf’s of the state condi-
tioned by the measurements [3]. These pdf’s provide a full
description of the estimated state. The BRR’s are assumed
in the following form

p(xk |zk) =
p(xk |zk−1)p(zk |xk)

p(zk |zk−1)
, (3)

p(xk+1|zk) =

∫
p(xk+1|xk)p(xk |zk)dxk, (4)

where p(xk |zk) is the filtering pdf, p(xk+1|zk) is the one-
step ahead predictive pdf, p(xk+1|xk) and p(zk |xk) are the

state transition pdf obtained from (1) and the measurement
pdf obtained from (2), respectively, and p(zk |zk−1) =∫

p(xk |zk−1)p(zk |xk)dxk . The closed form solution to the
BRR’s is available only for a few special cases [3]. In
other cases it is necessary to apply an approximation in
the BRR’s solution.

The Gaussian sum-based global filter requires specifi-
cation of the noises and initial state pdf’s in the form of
Gaussian sums as follows:

p(x0) =

N0∑
i=1

α
(i)
0 N {x0; x̂

(i)
0 ,P(i)0 }, (5)

p(wk) =

qk∑
i=1

β
(i)
k N {wk; ŵ(i)k ,Q(i)

k }, (6)

p(vk) =

rk∑
i=1

γ
(i)
k N {vk; v̂(i)k ,R(i)k }. (7)

where N {y; ŷ,Py} denotes Gaussian distribution of a ran-
dom variable y parametrized by its mean ŷ and covariance
matrix Py . The parameters α(i)0 , β(i)k , and γ (i)k are positive
weights of particular Gaussian terms with their sum being
equal to 1. All the parameters (i.e. the weights, means and
covariance matrices) are assumed to be known.

If any of the noises or the initial state has a distribution
different from Gaussian sum distribution, its Gaussian sum
approximation has to be found (e.g. using the expectation-
maximization (EM) method [21]). It has been proved that
the approximation by a Gaussian sum can be arbitrarily
accurate [3]. Considering the noises given by the Gaussian
sum pdf (5–7), the following algorithm of a global filter
provides a generic solution to the estimation problem.

Algorithm 1: Generic Gaussian Sum Global Filter

Step 1: (initialization) Set the time instant k = 0 and
define a priori initial condition p(x0|z−1) = p(x0) as a
sum of N0|−1 = N0 Gaussian terms.
Step 2: (filtering) The filtering pdf is approximated by

p(xk |zk) ≈

Nk|k∑
i=1

α
(i)
k|kN {xk; x̂(i)k|k,P(i)k|k}, (8)

where Nk|k = Nk|k−1 · rk . The filtering mean x̂(i)k|k and the
covariance matrix P(i)k|k of the i-th term N {xk; x̂(i)k|k,P(i)k|k}

are computed using

x̂(i)k|k = x̂( j)
k|k−1 +K(i)

k|k(zk − ẑ(i)k|k−1), (9)

P(i)k|k = P( j)
k|k−1 −K(i)

k|kP(i)z,k|k−1(K
(i)
k|k)

T, (10)

where K(i)
k|k = P(i)xz,k|k−1

(
P(i)z,k|k−1

)−1
and

ẑ(i)k|k−1 = E( j)
k|k−1[h(xk)] + v̂(l)k , (11)

P(i)z,k|k−1 = cov( j)
k|k−1[h(xk)] + R(l)k , (12)

P(i)xz,k|k−1 = E( j)
k|k−1[(xk − x̂( j)

k|k−1)(hk(xk)− ẑ(i)k|k−1)
T
],

(13)

2005



where E( j)
k|k−1[·] is a shorthand notation for

E
N {xk ;x̂

( j)
k|k−1,P

( j)
k|k−1}
[·] =

∫
[·]N {xk; x̂

( j)
k|k−1,P( j)

k|k−1}dxk

and cov( j)
k|k−1[·] for cov

N {xk ;x̂
( j)
k|k−1,P

( j)
k|k−1}
[·].

The likelihood ζ
(i)
k of the i th term with respect to the

known measurement zk is given by

ζ
(i)
k ≈ N {zk; ẑ(i)k|k−1,P(i)z,k|k−1}. (14)

The indices j and l are given by

j = i − b
i − 1

Nk|k−1
cNk|k−1, j = 1, . . . , Nk|k−1, (15)

l = 1+ b
i − 1

Nk|k−1
c, l = 1, . . . , rk (16)

and i = 1, . . . , Nk|k . The symbol bxc denotes the floor
function, i.e. the largest integer less than or equal to x .
The filtering weight α(i)k|k of each term is given by

α
(i)
k|k =

α
( j)
k|k−1γ

(l)
k ζ

(i)
k∑Nk|k−1

j=1
∑rk

l=1 α
( j)
k|k−1γ

(l)
k ζ

(Nk|k−1( j−1)+l)
k

. (17)

Step 3: (global point estimate) The global filtering mean
and covariance matrix can be obtained by the following
relations

x̂k|k = E[xk |zk
] =

Nk|k∑
i=1

α
(i)
k|k x̂(i)k|k, (18)

Pk|k = cov[xk |zk
]

=

Nk|k∑
i=1

α
(i)
k|k

[
P(i)k|k + (x̂k|k−x̂(i)k|k)(x̂k|k−x̂(i)k|k)

T
]
. (19)

Similarly, other point estimates (e.g. a mode or median)
can be obtained from the global state estimate (8).
Step 4: (reduction) Generally, the state or measurement
noise with the Gaussian sum distribution causes an expo-
nential growth of the number of Gaussian terms in the sum
(8), which must be reduced to keep computational costs
reasonable [22], [23].
Step 5: (prediction) The predictive pdf is approximated by

p(xk+1|zk) ≈

Nk+1|k∑
i=1

α
(i)
k+1|kN {xk+1; x̂(i)k+1|k,P(i)k+1|k}, (20)

where Nk+1|k = Nk|k · qk and α
(i)
k+1|k = α

( j)
k|kβ

(l)
k The

particular predictive mean x̂(i)k+1|k and covariance matrix
P(i)k+1|k are computed by

x̂(i)k+1|k = E( j)
k|k−1[fk(xk)] + ŵ(l)k , (21)

P(i)k+1|k = cov( j)
k|k−1[fk(xk)] +Q(l)

k . (22)

Again, the indices j and l are given by

j = i − b
i − 1
Nk|k
cNk|k, j = 1, . . . , Nk|k, (23)

l = 1+ b
i − 1
Nk|k
c, l = 1, . . . , qk (24)

and i = 1, . . . , Nk+1|k .
Let k = k + 1, Then go to Step 2.

III. RANDOMIZED UNSCENTED TRANSFORM

The RUKF proposed in [13] employs the RUT as a mean
to calculate approximate predictive statistics (state means
and covariance matrices) of the state and measurement. The
RUT is a special case of SIR3 proposed in [24], [25]. The
SIR3 aims at evaluating an integral of the form

µ =

∫
Rnx

ϕ(x)(2π)−nx/2|P|−1/2e−
1
2 (x−x̂)T P−1(x−x̂)dx,

(25)

where ϕ(·) is an arbitrary function. Note that relation (25)
can be interpreted as computation of the expected value
of the function ϕ(x) where x is a random variable with
p(x) = N {x; x̂,P}, i.e.

µ = EN {x;x̂,P}[ϕ(x)]. (26)

The SIR3 proposed in [24] for a solution to (25) is given
by the following algorithm:

Algorithm 2: Degree 3 stochastic integration rule

Step 1: Choose an error tolerance ε and a maximum
number of iterations Nmax .
Step 2: Initialize the number of iterations N = 0, initial
value of the integral µ̂ = 0nx×1, and initial square-error
of the integral estimate V = 0nx×nx and calculate a square
root
√

Px of Px such that Px =
√

Px
√

Px
T. Note that 0a×b

denotes a a × b matrix of zeros.
Step 3: Repeat (until N = Nmax or ‖V‖ < ε) the
following loop:

a) Set N = N + 1.
b) Generate a uniformly random orthogonal matrix

U of dimension nx × nx and generate a random
number ρ from chi-squared distribution ρ ∼
Chi(nx + 2).

c) Compute a set of points χi and appropriate
weights ωi according to

χ0 = x̂, ω0 = 1− nx
ρ2 ,

χi = x̂− ρU(
√

Px )i , ωi =
1

2ρ2 ,

χnx+i = x̂+ ρU(
√

Px )i , ωnx+i = ωi ,

where i = 1, 2, . . . , nx and the term
(√

Px
)

i
represents the i-th column of the matrix

√
Px .
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weights ωi according to

χ
( j)
0 = x̂( j), ω0 = 1− nx

ρ2 ,

χ
( j)
i = x̂( j)

− ρU(
√

P( j))i , ωi =
1

2ρ2 ,

χ
( j)
nx+i = x̂( j)

+ ρU(
√

P( j))i , ωnx+i = ωi ,

where i = 1, 2, . . . , nx .
c2) Compute the values E( j),N

[h(x)],
E( j),N

[h(x)h(x)T], and E( j),N
[xh(x)T]

of the statistics at current iteration

E( j),N
[h(x)] =

2nx∑
i=0

ωi h(χ
( j)
i ),

E( j),N
[h(x)h(x)T] =

2nx∑
i=0

ωi h(χ
( j)
i )h(χ( j)

i )T,

E( j),N
[xh(x)T] =

2nx∑
i=0

ωiχ
( j)
i h(χ( j)

i )T.

Step 3: Calculate values of the statistics as

Ê( j)
[h(x)] = 1

N

Ntotal∑
N=1

E( j),N
[h(x)],

Ê( j)
[h(x)h(x)T] = 1

N

Ntotal∑
N=1

E( j),N
[h(x)h(x)T],

Ê( j)
[xh(x)T] = 1

N

Ntotal∑
N=1

E( j),N
[xh(x)T].

Step 4: Find the covariance and cross-covariance matrices
as

ˆcov( j)
[h(x)] = Ê( j)

[h(x)h(x)T] − Ê( j)
[h(x)]Ê( j)

[h(x)]T,

Ê( j)
[(x− x̂( j))(h(x)− Ê( j)

[h(x)])T] = Ê( j)
[xh(x)T]

− x̂( j)Ê( j)
[h(x)]T.

Instead of specification of a fixed total number of
iterations, it is possible to monitor error of the means
Ê( j)
[h(x)], Ê( j)

[h(x)h(x)T] and Ê( j)
[xh(x)T] estimates,

compare the error with a pre-specified threshold, and iterate
until error of all statistic estimates are lower than the
threshold.

V. NUMERICAL ILLUSTRATION

Consider the following nonlinear non-Gaussian system
[18] with one-dimensional state

xk+1 = φ1xk + 1+ sin(ωπk)+ wk (27)

with the state noise wk described by the Gamma pdf
Ga(3, 2), ∀k, φ1 = 0.5, ω = 0.04 are scalar parameters
and k = 1, . . . , 60. The state is observed by the scalar
measurement described by the equation

zk =

{
φ2x2

k + vk, k ≤ 30,
φ3xk − 2+ vk, k > 30.

(28)

The measurement zk is influenced by the measurement
noise vk ∼ N {vk; 0, 10−5

}, ∀k, and the scalar parameters
are φ2 = 0.2 and φ3 = 0.5. The initial condition is given
by a sum of five Gaussian pdf’s p(x0) =

∑5
j=1 w̃( j)

−1 ×

N {(x0; x̂
( j)
0 , P( j)

0 } =
∑5

j=1 0.2 × N {x0; j − 3, 10}. The
predictive pdf p(x0|z−1) is equal to p(x0).

For the purposes of the Gaussian sum global filters, we
calculated a three-term Gaussian sum approximation of
Ga(3, 2) distribution by means of the expectation maxi-
mization algorithm as

p̃(wk) = 0.29×N {wk; 2.14, 0.72}
+ 0.18×N {wk; 7.45, 8.05}
+ 0.53×N {wk; 4.31, 2.29}, ∀k.

Performance of the following state estimation methods was
compared in the numerical example:
• global filters:

– Gaussian sum filter with the RUT (GSF-RUT),
– Gaussian sum filter with Taylor expansion of the

nonlinear equations [4] (GSF-TE),
– Gaussian sum filter with unscented transform [20]

(GSF-UT).
• local filters:

– EKF,
– UKF,
– RUKF.

Within all global filtering methods, the pruning step had
to be implemented to prevent exponential increase of the
number of terms in the filtering Gaussian sum pdf. More
specifically, at each time instant, the 20 highest-weighted
terms were kept while the other were discarded.

The GSF-RUT selected parameters were the maximum
number of iterations Nmax = 500 and the error tolerance
ε = 0.5. The efficient implementation of the RUT given by
Algorithm 3 was used. In this example, computational costs
of the efficient implementation amounts to approximately
7% of the computational costs of the simplest implemen-
tation described in the previous section.

The experiments were carried out using M = 1000 MC
simulations. Due to the global property of the estimates
produced by the GSF-RUT, five metrics were chosen for
comparison of the obtained results:
• Root Mean-Square Error (RMSE) defined as

RMSEk =

√√√√ 1
M

M∑
i=1

(x̂k|k(i)− xk(i))2,

where xk(i) and x̂k(i) denote true and estimated state
at the i-th MC run.
The RMSE metric provides an evaluation of the
estimate error expressed as the Euclidean distance
between the true state and its estimate. The value
of the RMSE provides an absolute evaluation of the
estimate error,
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performance measures evaluating accuracy of both point
estimates and density estimates. Three conclusions from the
comparative study were (1) in all cases, the RUT improved
the results over the UT, (2) the RUKF local filter resulted
in a better log mean square error and credibility index,
and (3) the global GSF-RUT filter had the lowest absolute
inaccuracy.
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